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ABSTRACT 

The ambient seismic noise at LASA was studied using high- 

resolution wavenumber spectra obtained for several subarrays chosen 

itom seven noise samples covering a seven month period.    A comparison 

of the high-resolution spectra with conventional spectra measured at two 

subarrays for one of the noise samples was made. 

Estimations of the frequency power spectra of the mantle 

P-wave noise and Isotropie Rayleigh-wave energy were obtained.    Also, 

estimations of the power spectra were determined for two low-velocity 

(V < 8. 0 km/sec),  fairly time-stationary,  directional noise modes.    One 

mode was present at 0. 2 cps only,  and the other was evident in the frequency 

range 0. 8 to 1. 1 cps. 

This investigation of the ambient seismic noise revealed one 

outstanding difference between the characteristics of subarray Fl and the 

characteristics of the other six subarrays studied.    At 0. 3 cps the apparent 

velocity (1. 6 km/sec) of Isotropie surface-mode energy at Fl was lower than 

the velocity of this energy (2. 2 km/tec to 2.7 km/sec) at the other subarrays. 
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SECTION I 

INTRODUCTION AND SUMMARY 

This report presents the results of an investigation of 

ambient seismic noise at LASA.    Essentially,  the analysis is based on 

high-resolution wavenumber spectra obtained for several subarrays 

chosen from seven noise samples recorded from October 1965 through 

April 1966.    One set of conventional wavenumber spectra for two sub- 

arrays was calculated also. 

Major results of the analysis of these spectra are 

• Estimation of the frequency power spec- 
trum of the mantle P-wave noise. 

• Separation of Isotropie Rayleigh-wave 
energy and an estimation of its power 
spectrum in the 0..-to 0.6-cps fre- 
quency range, 

• Separation of an organized noise mode 
in the frequency range 0.8 to 1. 1 cps 
propagating at 4. 0 to 5. 0 km/sec 
from a northeasterly direction. 

• Separation of fairly time-sUtionary, 
low-velocity (3.0 to 4.0 km/sec) 
noise at 0.2 cps.    This noise was in- 
terpreted as higher-order surface- 
mode energy traveling from an area 
extending N42*E to N80*E. 

• Detection of a characcerietic of sub- 
array Fl,  which is different from the 
general features of the other subarrays. 
The apparent velocity of Isotropie sur- 
face-mode energy at low frequencies 
(around 0. 3 cps) was about 1.4 km/sec 
at subarray Fl but was 2. 2 to 2. 7 km/sec 
at the other subarrays investigated. 

1-1/2 •0»*no« Mrvte«« d<v(aion 
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SECTION II 

INTERPRETATION OF CONVENTIONAL WAVENUMBER SPECTRA 

Conventional wavenumber spectra of a noise sample re» 

corded o    15 March 1966 from 04: 34:13. 1 to 04:42:13.0 were measured 

for subarrays Bl and C2 at 0. 2 cps and at frequencies from 0. 3 to 1.1 ops 

in increment« of 0. 2 cps.    Only the 19 seismometers in rings 1,   3,  4,  5, 

6.  7,  and 8 (Figure II-l) were used.    A limitation in a computer program 

forced this restriction.      The wavenumber spectra were obtained by ex- 

panding the array data in correlation space and then taking the Z-dimen- 

sional Fourier transform. 

Figur« 11*2 shows the wavenumber spectra meaaured at 

subarrays Bl and C- at 0. 2 cpe.    The spectral window at 0. 2 cps is In- 

cluded in the figure also.    Estimates of the spectra are similar for both 

subarrays.    The noise sppears to be predominantly high velocity (V> 8. 0 km/ 

^•c),  but the resolving power of the subarray it not sufficient to show any 

peak«. 

Likewise, at 0. J cps (Figure 0-3).  berth subarrays have 

poor rcaoiution.    Both wavenumber spectra indicate dominant high-veloc- 

ity MMrgf. 

Wavenumber spectra at 0.5 cpe measured at subarrays Bl 

and C2 and the äpeetrat window at 0.5 cpe ere shown In Figure 11-4.   Again, 

the spectral estimate« are conalatent, and the high-velocity noise pre- 

dominate«.    The timtlarity of the spsctrai window and the wavenumber 

spectra indicate« a strong peak near infinite velocity. 

At 0.7 ep«,  wavenumber spectra measured at both subarrays 

»ISQ have similar cK*ract«rtstics   (Figure 0-5).    The noise field Is more 

complM at thia frequency than at lower frequencies.    In addition to the 

Mgh-velocity nolec. there if, Uidlcatio»« of a tower-velocity (V>8,0 km/swc) 

MUe mode propegating roughly from ^e east. 

II    1 «otenee —reteaa dWIeton 
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Figure II-2.   Subarray Wavenumber Spectra at 0. 2 cps 
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Figure II-3.    Subarray Wavenumber Spectra at 0. 3 cps 
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Figure II-4.    Subarray Wavenumber Spectra at 0. 5 cps 
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f There is a better indication of this strong low-velocity peak 

in the wavenumber spectra of Bl and C2 at 0. 9 cps (Figure II-6).    The noise 

mode appears to be traveling from the east with a velocity of 4. 0 to 8.0 km/sec. 

The P-wave peak and the lower-velocity peak are not separated, which makes 

velocity estimation difficult.    Spectra for the two subarrays are again very 
similar. 

Figure II-7 shows the wavenumber spectra and the spectral 

window at 1,1 cps.    The coherent noise is dominated by the low-velocity 

westerly propagating noise and by high-velocity noise. 

At 1. 3 cps (Figure II-8), dominant features of the wavenumber 

spectra measured at 1. 3 cps are similar.    The coherent noise has a sharp 

peak corresponding to wave propagation from the east at about 8.0 km/sec. 

The outlying peaks are probably meaningless because of the strong random 

components at this frequency. 

At each frequency, there was general agreement in the wave- 

number spectra measured at Bl and C2 subarrays.    The low-frequency noise 

(below 0. 7 cps) is dominated by high-velocity (V > 8. 0 km/sec) energy.    There 

appears to be some organiz   d lower-velocity noise above 0.7 cps. 

One-dimensional spectra measured at three other subarrays 

for this noise sample also contained a noise mode propagating from N790E 

to S880E with a velocity of 4. 0 to 5. 0 km/s ec.    Thes e K -line spectra are dis - 

cussed and a comparison with the conventional spectra is made in Section IV. 

II -7 sci«mc« ••rvloes division 
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Figure II-6.   Subarray Wavenumber Spectra at 0. 9 cps 
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SECTION III 

DESCRIPTION OF THE K-LINE WAVENUMBER SPECTRA 

A general description of the K-line wavenumber spectra 

has been presented in previous literature,    but a brief description is 

included here for the reader's convenience. 

The 1 -dimensional wavenumber spectra are physically 

interpreted as projections of 2-dimensional power-density spectra onto 

axes which are parallel to the axes of a LASA subarray (Figure II-1).    These 

spectra give the power density of the ambient seismic noise as a function 

of its apparent wavenumber along each of the array's aims.   Although 

knowledge of the spectral projections onto the thr^e arms is basically 

inferior to knowing the 2-dimensional spectrum itself, the resolution of 

these K-line spectra provides a much higher resolution spectrum of the 

LASA noise field than is obtainable using only the low-resolution 2-dimen- 

sional spectra. 

The basic input for calculating each of the 1-dimensional 

spectra is the crosspower matrix [$.. (f)] , where f is the frequency and i 

and j range over the seismometers of each arm of the array.    The cross- 

power matrices were obtained by transforming the time traces using the 

Cooley-Tukey algorithm   and smoothing the weighted crossproducts of the 

Fourier transform outputs ever a 0.1-cps frequency interval (41 basic 

frequency points). 

K-line wavenumber spectra were calculated in increments 

of 0.1 cps at ten frequencies starting with 0. 2 cps.    These sets of spectra 

were measured at various subarrays for seven noise samples.    The spectra 

are shown in Figures III-l through 111-16. 

For each frequency, there is a wavenumber power-density 

spectrum and an integrated wavenumber power -density function for ^ach 

III-l sci«noe ••rvleM division 



line of the array.    The power-density ■pectrum and the integrated deaelty 

function are included in the same plot to save space.    Wtvenumber spectre 

are plotted in db vs wavenumber in cycles/km.    The left vertical axle U 

marked in 5-db increments with the 0-db level indicating the average value 

of the spectrum. 

The normalized, integrated wavenumber power-density 

function is 

J      P(x)dx, withy    P(x)dx»l 

-k -k 

where P(x) is the wavenumber power-density spectrum and k is the foldover 

wavenumber.    The foldover wavenumber is 1 + 2 times the average «pacing 

of the equidistant seismometers along the arm of the array.    This function 

has been plotted in fractional power vs wavenumber in cycles/kin.    The 

right vertical axis is marked from 0.0 to 1.0 in increments of 0. 1.    Theee 

integrated spectra provide a method of measuring the amount of power in 

any velocity or wavenumber band. 

In these wavenumber plots,the solid vertical line at the center 

of the plot (at k = 0) represents infinite apparent velocity along the arm of 

the array.    On either side of this line are dashed lines representing 

velocities of 8.0 km/sec and 1.6 km/sec.    These velocities are approximately 

the minimum apparent velocities for P-wave and Raylelgh-wave noise when 

the noise propagation is in-line with an arm. 

The velocity of 1.6 km/sec is the approximate fundamental 

surface-mode velocity in the frequency range 0. 3 cps <f <1.0 cps.    The 

Rayleigh-wave velocity lines (1.6 km/sec) correspond to the edge velocity 

of the plots at 0. 8 cps.   At higher frequencies, the velocity lines appear la 

their aliased position. 

Ill-2 ecleno« servloes division 
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Figure III-2,   Wavenumber and Integrated Spectra for Subarray F4 
for 29 October 1965 

III-6 solsno« ••nrlo«s division 



r 
S87«W-Ng7»E AHM 

I 

I 

1 

[ 

I 

[ 

! 

L 
i 

c 

M C3 02 ai 0  0.1 02 0.3 04 
WWtNUMSCR IN crcucs/KM 

0.4 05 02 0J 0 01 02 Q] 04 - 
WAVENUHBER  IN CYCLES/KM 
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Figure III-4.   '^avenimiber and Integrated Spectra for Subarray Fl 
 fojr 22 January 1966 ^ 
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Figure III-8.   Wavenumber and Integrated Spectra for Subarray AO 
for 25 March 1966 
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Figure HI-9.    Wavenumber and Integrated Spectra for Subarray Fl 
for 25 March 1966 
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Figure 111-10.   Wavenumber and Integrated Spectra for Subarray F3 
for 25 March 1966 

m-14 sotono« ■•rviOM division 



sn'W-NlfE   ARM y7T,W-N7T*E ABM N«3»W-S4yt: A«M 

04 030X01 0 0,1 020304 
WAVENUM9ER  IN CYCLES/KM 

04 0302 01 0  01 ■■hi ' 
VJUtmiHttn IN CYCLtS/KM WAVtNUMJE«   IN CTCtlV«*« 

Figure III-11.   Wavenumber and Integrated Spectra for Subarray B4 
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Figure 111-14,    Wavenumber and Inte^rat^d Spectra for Subanay B* 
for 29 April 1966 
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Figure 111-15.    Wavenumber and Integrated Spectra for Subarray F2 
for 29 April 1966 
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Figure III-17.   Fractional Prediction Error in db vs Frequency for Pre- 
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SECTION IV 

INTERPRETATION OF THE K-LINE WAVENUMBER SFECTRA 

LASA ambient seismic noise components and an estimation 

of their frequency power spectra were obtained from the K-line wavenumbsr 

U spectra by combining the information contained in the spectra of the three 

arms of the subarray for each frequency.    Each peak in the K-line jpectra 

corresponds to the apparent wavenumber of some wave as measured in the 

direction of each arm of the subarray.    Lines were drawn perpendicular 

to the arms of the subarray at points corresponding to the apparent wave- 

mvmbers associated with each peak in the spectra.    Intersection of the 

appropriate lines from the three arms represents the wave in K space. 

OThe wavenumber was measured from the center of the plot (0.0 cycles/km) 

to the intersection.   In general,  the line intersection was not a point but, 

D instead, a triangle due to imperfect data and analysis.    The center of the 

triangle was used as the estimated point of intersection of the three lines, 

n This method of obtaining the direction and velocity of the noise source from 

»J the K-line spectra is illustrated in Figure IV-1 for the spectra of subarray 

n F4 at 0. 2 cps (Figure III-2). 

l-! Figure IV-2 contains the estimated frequency power spectra 

of the ambient seismic-noise components as determined by the K-line spectra 

for seven noise samples.    These estimates are shown after they were combined 

with the absolute frequency spectra of the total noise.    In most cases,  es - 

timates of the power were calculated only from the density function of Mie 

arm along which the energy was most clearly separated in the spectra. 

Two low-velocity (v <8.0 km/sec), fairly time-stationary, 

directional noise modes were very apparent in the K-line spectra of all 

noise samples.    One mode was present at 0. 2 cps only, and the other was 

evident in the frequency range 0. 8 cps to 1. 1 cps. 
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Figure IV-1.    Method of Obtaining Possible Direction and Velocity of 
        Noise Mode at 0. 2 cps for Noise of 29 October 1966 
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RMohttto« nf thm •pcctr* «t 0,2 cp« wu quit« good, and fmlr 

••UmAUi ^ not«« direction and velocity ««re obUtned.    Tb« low-v«locity 

mod» «1 Uli« frwju.ncr coMiirutvd, on th« «vcrag«, about 50 percent of the 

total not«« power.    Direction of arriving wav«« v.rted from N42#E to N83-E, 

m4 |i»*a»e veleeity ieoersüy ranged from J. 0 to 4.0 km/iec.    Table IV-i con- 

Uir* the velocity and dlr^c» on c€ tbie energy for all notee eamplee.   (ThU 

n<H«# mode w«e not preeent In th« K-llne wavenumber epectra of «ubarray Tl 

for the noiee cample of 22 January 1966 and «ubarray A0 for the nolle «ample 

of 2* March 1966.)   Tht« velocity range Indicate« the pretence of • 

Mghrr order «urfac« mode, eince —according to theoreU ;al LASA dlepereion 
1 

turvee    (Ptgure IV-*) —the velocity of the fundamental Rayleigh mode at 

0.2 cp« le only abottf 2. § km/e«c. 

A poeeible generator of thic direction«, «urface mode i« wave 

activity along the Newfoundland-New Brunewick coa«t.    No hypothesis a« 

to why the fundamental Rayleigh mode »i «beont La «uggeated.   It 1« noted, 

however, that the fund« nental surface mode ha« been obeerved from «uch 

wave activity at Tonto Forest Obecrvatory. 

No organised,  low-velocity noise lobe was evident in the 

cooventianal wavenumber spectrum at 0.2 cp«, discussed earlier in this 

report.   Probably, the resolving power of the conventional spectra was 

Insufficient to indicate both P-wave and surface-mode peak« at this fre- 

quency. 

At higher frequencies (f >0, 7 cp«), there is better agreement 

between conventions' and hlgh-reeolution «pectra.   Analysis of the conven- 

tional spectra indicated possible lower-velocity modes (V<8,0 km/sec) 
4 

propagating roughly east to west across the array.   Also, previous results 

of wavenumber spectra of two May 1965 noise samples for subarrays Angela 

(B 1) and Hysham (F3) revealed the presence of this energy.    Estimated 

velocity range was 4.0 to 8.0 km/sec. 
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Table IV-1 

DIRECTION AND VELOCITY OF LOW-VELOCITY 
SURFACE MODE AT 0. 2 cps .^OR ALL NOISE SAMPLES 

Noise 
Sample Subarray 

Direction 
of Source 

Velocity of 
Noise Mode 

(km/sec) 

29 October 1965 
A0 N590E 3.3 

F4 N550E 3.2 

22 January 1966 
B3 N830E 3.7 

F3 N540E 4.0 

5 February 1966 
A0 N790E 3.3 

F2 N530E 3.3 

25 March 1966 
Fl N420E 3.0 

F3 N450E 3.6 

8 April 1966 
B4 N830E 3.1 

F4 N60oE 4.0 

15 April 1966 
A0 N740E 4.0 

F2 N490E 4.0 

29 April 1966 

B4 N??^ 3.3 

F2 N740E 3.6 

F4 N580E 3.7 
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This noise mode is also apparent in the I-dimensional wave- 

number spectra in the frequency range 0. 8 to 1.1 cps.   The organized 

noise        pagates at approximately 4.0 to 5.0 km/sec from a northeasterly 

direction.   Although K-line spectra were not calculated for subarrays Bl 

and C2 for the 25 March 1966 noise sample, K-line spectra were calculat'J 

for three other subarrays (A0,  Fl, F3) for this same noise sample 

(Figures III-8, III-9S and 111-10).    These spectra indicate the direction of 

propagation to be from an area extending N790E to S760E.    This direction 

is in agreement with the due-east direction obtained from the conventional 

spectra measured at subarrays Bl and C2.    The apparent direction and 

velocity of this mode as determined by the K-line spectra of each subarray 

for every noise sample are included in Tables IV-2 and IV-3. 

An attempt was made to determine the location of this source 

by projecting vectors in the direction of the oncoming organized noise for 

all the subarrays and observing the intersection of these vectors on a map. 

No probable location could be determined, however, because the azimuths 

usually were divergent.   Also, no consistent direction was associated with 

each subarray (Table IV-3). 

These conflicting results are possibly due to one (or a com- 

bination) of three causes.   One of these caures is the imperfections in the 

data and analysis.   As discussed previously, the direction and velocity 

were obtained by projecting lines perpendicular to the arms of the subarray 

in K space at locations on the arms corresponding tc the apparent wive- 

number of the noise mode,,    At these higher frequencies (0.8 to 1.1 cps), 

either the noise mode was separated in the spectra of two of the three arms 

or the intersection of the three lines was not a point but a fairly large 

triangle.   In the latter case,  the center of the triangle was used as the es- 

timated point of intersection.   A similar study at the TFO array    resulted 

in better resolution consistency.    This may be due either to the arrangement 

of the array (TFO has 11 seismometers in line, whereas a LASA subarray 

has only five) or to the length of the data (the TFO study used a 20-min noise 

sample, and this study investigated 7-min noise samples). 
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Table IV-2 

RANGE OFAZIMUTH AND VELOCITY OF THE ORGANIZED, 
LOW-VELOCITY NOISE IN FREQUENCY RANGE 0. 8 TO 1.0 cps 

Noise 
Sample Subarray 

Azimuth 
Range 

Velocity 
Range 

(km/sec) 

29 October 1965 
A0 N540E-N620E 3.6-4,3 

F4 N30oE-N47oE 4.4-5.0 

22 January 1966 

B3 S840E-S890E 3.8-4.0 

Fl N670E-N870E 3.8-4.5 

F3 N510E 4.2 

5 February 1966 
A0 N70oE-N75oE 4.6-5.4 

F2 N55oE-N80oE 4.1-5.0 

25 March 1966 

A0 N860E-S880E 4.4-5.5 

Fl S760E-S81aE 4.6-5.0 

F3 N790E-N840E 4.0-4.8 

8 April 1966 
B4 N780E-N8rE 3.2-3. 7 

F4 N70oE-N80oE 4.5-4.7 

15 April 1966 
A0 N630E-N74oE 4.3-4.9 

F2 N620E-N710E 4.5-4.6 

29 April 1966 

B4 N46oE-N50oE 4.2-4.7 

F2 N650E-N740E 4.2-4.3 

F4 N610E-N820E 4.3-4.5 

IV-11 science services division 

-—■'  ^"-     '^■■^.     'l'1       " .■        ' I     U      ll.l I..--I    ■-■■   .      1       '.   ., ■ .; II .1.   :     Uli —I.     —MIM» 



<$. 

Table IV-3 

RANGE OF AZIMUTH AND VELOCITY WITHIN SUBARRAYS OF 
THE LOW-VELOCITY NOISE IN FREQUENCY RANGE 0. 8 TO 1. 0 cps 

Noise 
Sample Subarray 

Azimuth 
Range 

Velocity 
Range 

(km/sec) 

29 October 196l> 

5 February 1966 

25 March 1966 

15 April '.966 

AÖ N540E-N620E 3.6-4.3 

N70oE-N75oE 4.6-5.4 

N86oE-S880E 4.4-5.5 

N630E-N740E 4.3-5.9 

8 April 1966 

29 April 1966 

B^ N780E-N810E 3.2-3.7 

N46oE-N50oE 4.2-4.7 

22 January 1966 

25 March 1966 

Fl N670E-N870E 3.8-4.5 

S760E-S8I0E 4.6-5.0 

5 February 1966 

15 April 1966 

29 April 1966 

F2 N55oE-N80oE 4.1-5.0 

N62#E-N?10£ 4.5-4.6 

N65*E-N740E 4.2-4,3 

22 January 1966 

25 March 1966 

F3 N510E 4.2 

N790E-N840E 4.0-4.8 

29 October 1965 

8 April 1966 

29 April 1966 

F4 N30oE-N47oE 4.4-5.0 

N70oE-N80oE 4.5-4.7 

N610E-N820E 4.3-4.5 
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Another possible cause of divergent azimuths is that the 

source may be a difluse source such as a river.    The LASA array is bound- 

ed on the east and northeast by the Yellowstone and Missouri rivers.    Local 

crustal variations may be another cause.    LASA is situated on a shale 

foundation, which is notoriously anisotropic and variable. 

Even though this noise source is unidentified, it is known to 

be time-stationary and traveling from the northeast with a horizontal ve 

loclty between 4.0 and 5.0 km/sea.   At 0.8 cps, this mode constitutes 

between 25 and 35 percent of the total power.    Estimates of the frequency 

power spoctra of this energy are shown In Figure IV-2.    A comparison of 

the estimated spectra of each noise sample revealed that the spectra generally 

differ by 2.0 to 4.0 db between „ubarrays within each noise sample.    The 

most consistent spectra are those of the noise samples of 5 February and 

29 April,  each of which differs by less than 1 db in the frequency range 0,8 

to 1. 1 cps.   Wh m the spectra were compared to determine their consistency 

in time, the difference between spectra generally was about 1,0 to 3.0 db. 

Another major constituent of the ambient noise is low-velocity 

(1, 3 to 2,0 km/sec) Isotropie Rayleigh energy.   Presence of this Isotropie 

energy is indicated in the K-line spectra by shoulders on each arm.      This 

energy is generally present in the frequency range 0. 3 to 0.7 cps.    Disper- 

sion of the Isotropie surface-mode energy i^ evident in the K-line spectra. 

Some variation among noise samples and   ubarrays exists; but ab  ve ~ 0.4 

cps,   the velocity generally is approximately 1. 6 km/sec,  which agrees with 
3 

theoretical dispersion curves    shown in Figure IV-3. 

Power spectra of this energy are included in Figure IV-2» 

These estimates represent the amount of power contained in the shoulders 

of the K-line spectra and were obtained from the integrated wavenumber 

power-density function«    Spectra for the same subarray but for different 

noise samples differ by about 1.0 to 4.0 db in the frequency range 0.4 to 0. 7 cps. 

Generally, at 0. 4 cps, the Isotropie energy contributes about 24 percent of 

the total noise power. 
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A strong contribution to the total noise comes from high-velocity 

energy.    The mantle P-wave noise was estimated from the K-line spectra by 

taking the energy above the "white" background with horizontal velocity greater 

than 8.0 km/sec.    In obtaining estimates of the mantle P-wave spectra, the 
fact that broadside Kayleigh energy contributes to the amount of apparent high- 

velocity energy was considered.    The power of the mantle P-wave noise 

generally predominates for all frequencies greater thanO. 3 cps and leus than 

1.0 cps.   At higher frequencies   (1.0 and 1. 1 cps), the energy appears to 

be essentially uncorrelated. 

Estimates of the mantle P-wave energy are generally less than 

3,0 db below the total noise sp3ctrum in the frequency range 0. 3 to 0. 6 cps. 

Between 0.6 and 1. 1 cpsD the P-wave spectrum usually is 3.0 to 5.0 db be- 

low the total spectrum.    Results from other array sites indicate that the level 

of coherent mantle P-wave energy falls rapidly with frequency and cannot be 

detected as spatially orgainzed noise at frequencies much greater than 1, 0 cps. 

The limited resolution of the array again precludes any reliable estimate of 

average velocity and direction of this energy. 

The estimated P-wave spectra have variations in time of 1,0 to 

3, 0 db in the frequency range 0. 3 to 0. 8 cps for four of the five subarrays in- 

vestigated.    Subarray F3 spectra differed by as much as 6.0 db in this fre- 

quency range.    For frequencies between 0.8 and 1.0 cps, the variation between 

spectra usually was about 4. 0 db. 

Also, the mantle P-wave spectra were not space-stationary. 

The spectra for the subarrays of three noise samples varied about 1.0 or 

2.0 db in the frequency range 0. 3 to 1.0 cps; and for the other four noise 

samples, the spectra differed by as much as 5.0 db. 

In view of the large signal-smplitude differences observed at 

LASA, these P-wave spectral differences should certainly be expected.   It 

appears that the P-wave noise power spectra differ a great deal less (in am- 

plitude) than signals. 
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Only the major components of the total noise field were inves- 

tigated in this analysis.    Some noise samples of some subarrays contained noise 

modes which were not present in the other samples or subarrays.    Usually, 

these modes were not consistent in frequency and, therefore, were not in- 

eluded.   One of those noi.8 e modes, however, had consistent frequency.    It 

was present in the K-line spectra of subarray F4 for 29 April 1966 (Figure 111-16). 

This subarray has a low-velocity surface-mode in the frequency range 0,7 to 

1. 1 cps.   Direction of the source is consistently N450E, and velocity range 

is 1.4 to 1. 5 km/sec.    This direction corresponds to an arm of the Fort Peak 

reservoir (a distance of 64 km) but not to the dam or the main part of the lake. 

This reservoir possibly is the source. 

Investigation of the general properties of t're K-line spectra 

showed one outstanding difference between the wavenumber spectra of subarray 

Fl (Figures III-4 and III-9) and the spectra of the other six subarrays investi- 

gated.   At lower frequencies (especially at 0. 3 cps),  the apparent velocity of 

Isotropie surface-mode energy was about 1.6 km/sec at subarray Fl,   However, 

at all other subarr  ys, this velocity ranged generally between 2.2 and 2,7 km/ 

sec.    This change in the spectra of subarray Fl Is probably due to structural 

differences at Fl. 

In this analysis of the K-line wavenumber spectra, attempts to 

estimate directions or velocities were often limited by the resolution of the 

array.    Low spectral resolutions are due to the small number ox seismometers 

in a line.    To obtain a higher spectral resolution,  additional seismometers were 

simulated by using interpolated data.   In this manner, it was possible to form 14 

equally spaced data points in each arm with 0.5-km spacing.    Resulting K-line 

wavenumber spectra for subarray F4 on 29 October 1965 are shown in Figure 

IV-4.    Original K-line spectra for this noise sample are in Figure III-2. 
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As may be noted, the resulting spectra are of much higher re- 

solution.    However, when an analysis of these spectra was made,  the 

previously discussed method to obtain direction and velocities of each noise 

mode still resulted in a triangular intersection.    The triangles obtained for 

both the interpolated and the noninterpolated data were usually the same size. 

In other words, there was no significant improvement in accurately esti- 

mating directions and velocities of the noise modes. 

An estimate of the percentage of the total noise that is mantle 

P-wave noise as determined by the new spectra is compared to that obtained 

by the previous method (Figure IV-5).    Between 0. 3 and 1.0 cps, the spectral 

estimates differ less than 1.0 db.    At 1. 1 cps, the spectra of the mantle P- 

wave noise estimated using the interpolated data are 3. 2 db below the other. 

■ :■   .■■■ 
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Figure IV-4.   Wavenumber and Integrated Spectra for Subarray F4 Using 
 Interpolated Data of 29 October 1966 
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SECTION V 

CONCLUSIONS 

Analysis of the subarray wavenumber spectra isolated and pro- 

duced estimates of the power spectra of four constituents of LASA ambient 

seismic noise.   A higher-order surface mode traveling from an area extending 

N420E to N80oE with a velocity of 3. 0 to 4. 0 km/sec was present at 0, 2 cps. 

On the average,  this mode constituted about 50 percent of the totil noise power 

at this frequency.   A possible generator of this directional surface mode is 

wave activity along the Newfoundland-New Bunswick Coast.    This low-velocity 

energy was not present in conventional wavenumber spectra. 

The 2-dimensional spectra contained an organized low-velocity 

noise mode at frequencies between 0. 7 and 1. 3 cps.    The higher resolution 

spectra indicated that this noise propagates from the northeast at 4,0 to 5,0 

km/sec.   An estimate of its frequency power spectra was obtained for the 

frequency range 0. 8 to 1. 1 cps.   At 0. 8 cps, this mode contributed between 25 

and 35 percent of the total power. 

Another major constituent of the ambient noise was found to be 

Isotropie,  low-velocity (1.3 to 2.0 km/sec) Rayleigh energy.    This energy is 

generally present in the frequency range 0. 3 to 0.7 cps.   Above about 0.4 cps, 

the velocity generally is approximately 1.6 km/sec. 

Mantle P-wave energy predominates in the noise spectrum at 

frequencies above 0. 3 cps.    The P-wave component is stronger in the fre- 

quency range 0. 3 to 0. 6 cps.    The estimated P-wave spectrum had variations 

with time of J. C to 3.0 db between 0. 3 and 0, 8 cps. 
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General features of the wavenumber spectra of subarray Fl at 

0. 3 and 0.4 cpo were very different from the spectra of the other subarrays. 

At these frequencies, the apparent velocity of Isotropie surface-mode energy 

was 1.6 km/sec at Fl but was 2.2 to 2.7 km/sec at the other subarrays. 

This difference in velocities is probably due to structural differences at sub- 

array Fl. 

The K-line wavenumber spectra of the LASA data do not give 

the resolution or consistency previously obtained at TFO.      There are several 

probable causes.   A LASA subarray has only five equidistant sensors in a line, 

whereas there are 11 in a line at TFO.    Interpolated data improved the res- 

olution of the spectra somewhat.    Resulting variability probably can be con- 

trolled by using various combinations cf data points. 

TFO data (20 min) was longer than LASA data (7 min).    The pre- 

diction error of this noise at TFO was generally 3, 5 to 7. 5 db less than the 

prediction error at LASA in the frequency range 0. 3 to 0. 8 cps. 

It appears that the data are more precisely interpretable as 

seismic energy at TFO than at LASA.    The most obvious difference between 

these two stations is that TFO is located on basemcut rocks, while LASA is in 

an area of thick cretaceous and tertiary  shales.    It is logical to suspect that 

this may be affecting the data. 
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